metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II)

Shu-Juan Li,^a Ai-Hui Chen,^a Zhan-Ying Zheng,^b Shu-Wan Liu^a and Qing-Xiang Liu^a*

^aTianjin Key Laboratory of Structure and Performance of Functional Molecules, College of Chemistry and Life Science, Tianiin Normal University, Tianiin 300387. People's Republic of China, and ^bState Key Laboratory of Element-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China Correspondence e-mail: qxliu@eyou.com

Received 27 October 2009; accepted 10 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.012 Å; disorder in main residue; R factor = 0.035; wR factor = 0.081; data-to-parameter ratio = 16.7

In the title compound, $(C_{11}H_{15}N_2)_2[HgBr_4]$, the tetracoordinated Hg^{II} center of the complex anion adopts a distorted tetrahedral geometry [Hg-Br = 2.5755 (8)-2.623 (11) Å and Br-Hg-Br = $103.78 (19)-116.4 (3)^{\circ}$]. One of the Br atoms is disordered over two sites [site-occupancy factors = 0.51 (6) and 0.49 (6)]. The N-C-N angles in the cations are 110.7 (6) and 111.4 $(7)^{\circ}$. In the crystal packing, a supramolecular chain is formed via both weak intermolecular C-H···Br hydrogen bonds and π - π aromatic ring stacking interactions [centroid–centroid separation = 3.803 (1) Å].

Related literature

For background to the chemistry of imidazolium compounds, see: Bourissou et al. (2000); Garrison & Youngs (2005); Hunter & Sanders (1990); Jacobsen et al. (2009); Juan & Lee (1999). For a related structure, see: Liu et al. (2003).

Experimental

Crystal data (C₁₁H₁₅N₂)₂[HgBr₄] $M_r = 870.73$

Triclinic, $P\overline{1}$ a = 8.4334 (15) Å

D = 9.9989 (10) A	Z = Z
c = 18.328 (3) Å	Mo $K\alpha$ radiation
$\alpha = 85.060 \ (3)^{\circ}$	$\mu = 11.15 \text{ mm}^{-1}$
$\beta = 81.684 \ (3)^{\circ}$	T = 296 K
$\gamma = 67.250 \ (2)^{\circ}$	$0.25 \times 0.24 \times 0.23 \text{ mm}$
V = 1409.5 (4) Å ³	
Data collection	
Data conection	
Bruker MART APEX CCD area-	7102 measured reflections
detector diffractometer	4923 independent reflections
Absorption correction: multi-scan	3711 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.019$
$T_{\min} = 0.047, \ T_{\max} = 0.077$	

Refinement

0,0000 (1() Å

$R[F^2 > 2\sigma(F^2)] = 0.035$	294 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$
4923 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

~

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8A···Br1′	0.97	2.73	3.69 (2)	175
$C8 - H8B \cdot \cdot \cdot Br4^{i}$	0.97	2.86	3.755 (8)	153
$C28-H28\cdots Br1'$	0.93	2.84	3.59 (2)	139

Symmetry code: (i) x, y - 1, z.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the National Science Foundation of China (Project Grant No. 20872111) and the Natural Science Foundation of Tianjin (07JCYBJC00300).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2017).

References

- Bourissou, D., Guerret, O., Gabba, F. & Bertrand, G. (2000). Chem. Rev. 100, 39 - 92
- Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.
- Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5528. Jacobsen, H., Correa, A., Poater, A., Costabile, C. & Cavallo, L. (2009). Coord. Chem. Rev. 253, 687-703.
- Juan, C. R. M. & Lee, B. (1999). Coord. Chem. Rev. 183, 43-80.
- Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309-314.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m1652 [doi:10.1107/S1600536809047461]

Bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II)

S.-J. Li, A.-H. Chen, Z.-Y. Zheng, S.-W. Liu and Q.-X. Liu

Comment

In the last two decades, the complexes of *N*-heterocyclic carbenes (NHCs) have experienced a rapid development and been used in many fields of chemistry (Garrison & Youngs, 2005). Because *N*-heterocyclic carbenes (NHCs) are strong sigma-donors, they have been found to be more effective ligands for organometallic catalysis than other two-electron donor ligands such as phosphines (Bourissou *et al.*, 2000). To date, a number of NHC-metal complexes have been synthesized, and some of these have been used in a broad spectrum of catalytic reactions (Jacobsen *et al.*, 2009). Herein, we report the synthesis and crystal structure of bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II) $2(C_{11}H_{15}N_2)^+$ [HgBr4]²⁻ (I) (Fig. 1). In the title compound, the N1—C7, N2—C7 and N3–C28 and N4–C28 bond distances in the two anion are 1.325 (8), 1.301 (8) Å and 1.322 (9), 1.306 (9) Å respectively, and the N1—C7—N2 and N3–C28–N4 bond angles are 110.7 (6) and 111.4 (7)° respectively. These values are similar to those found in 1-(9-anthracenylmethyl)-3-ethylimidazolium iodide (Liu *et al.*, 2003). In the [HgBr4]²⁻ complex anion, the tetra-coordinated mercury(II) center adopts a distorted tetrahedral geometry [Hg—Br bond distance range, 2.5755 (8)–2.623 (11) Å; Br–Hg–Br bond angle range, 103.78 (19)–116.4 (3)°]. One of the Br atoms is disordered over two close sites: Br1/Br1' [occupancy factors 0.49 (6), 0.51 (6)]. In the crystal packing of title compound (Fig. 2), a one-dimensional supramolecular chain is formed *via* both weak intermolecular C—H···Br hydrogen bonds (Table 1) (Juan & Lee, 1999), and π -m benzimidazole ring stacking interactions (interplanar centroid-to-centroid separation, 3.803 (1) Å] (Hunter & Sanders, 1990).

Experimental

A solution of 1-ethylbenzimidazole (2.00 g, 13.7 mmol) and ethyl bromide (1.64 g, 15.0 mmol) in THF (100 ml) was stirred for three days under reflux, and a white precipitate was formed. The product, 1,3-diethylbenzimidazolium bromide was filtred and washed with THF. Yield: 2.552 g (73%). A suspension of this product (0.200 g, 0.8 mmol) and mercury(II) bromide (0.288 g, 0.8 mmol) in DMSO (5 ml) and acetonitrile (30 ml) was refluxed for 18 h, and a pale yellow solution was formed. Water (30 ml) was added the then extracted with CH_2Cl_2 (30 ml). The extract was dried with anhydrous MgSO₄ and After removing CH_2Cl_2 , a white powder of the title compound (I) was obtained. Yield, 0.187 g (55%); m.p. 196–198° C; ¹H NMR (300 MHZ, DMSO-d6): 1.54 (t, J = 4.2, 6H, CH₃), 3.72 (q, J = 4.2, 4H, CH₂), 7.35 (m, 2H, PhH), 7.83 (d, J = 6.3, 2H, PhH), 9.22 (s, 1H, 2-bimiH) (bimi = benzimidazole).

Refinement

All H atoms were initially located in a difference Fourier map. These were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with Csp^3 —H = 0.97 Å, Csp^2 —H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. One of the bromide atoms was found to be disordered over two close sites: Br1/ Br1' [occupancy factors 0.49 (6)/0.51 (6)]. One reflection was considered to be affected by the beamstop.

Figures

Fig. 1. Atom naming scheme for the title compound (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted.

Fig. 2. The one-dimensional supramolecular chain of the title compound formed *via* C—H···Br hydrogen bonds and π - π interactions. The non-interactive H atoms have been omitted.

Bis(1,3-diethylbenzimidazolium) tetrabromidomercurate(II)

Z = 2
$F_{000} = 820$
$D_{\rm x} = 2.052 \ {\rm Mg \ m}^{-3}$
Melting point = 469–471 K
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3130 reflections
$\theta = 2.5 - 25.5^{\circ}$
$\mu = 11.15 \text{ mm}^{-1}$
T = 296 K
Block, colourless
$0.25 \times 0.24 \times 0.23 \text{ mm}$

Data collection

diffractometer
Radiation source: fine-focus sealed tube 3711 reflections with $I > 2\sigma(I)$
Monochromator: graphite $R_{\rm int} = 0.019$
$T = 296 \text{ K} \qquad \qquad \theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans $\theta_{min} = 1.1^{\circ}$
Absorption correction: multi-scan $h = -10 \rightarrow 7$ (<i>SADABS</i> ; Sheldrick, 1996)
$T_{\min} = 0.047, T_{\max} = 0.077$ $k = -11 \rightarrow 11$
7102 measured reflections $l = -20 \rightarrow 21$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2 + 1.1891P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.002$
4923 reflections	$\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$
294 parameters	$\Delta \rho_{\rm min} = -0.57 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Hg1	0.92830 (4)	0.40323 (3)	0.751796 (14)	0.05906 (11)	
N1	0.6000 (7)	0.0822 (6)	0.8460 (3)	0.0596 (14)	
N2	0.3689 (7)	0.2297 (6)	0.9074 (3)	0.0557 (13)	
N3	0.4560 (9)	0.7998 (6)	0.6180 (3)	0.0778 (18)	
N4	0.5979 (8)	0.7150 (6)	0.5126 (3)	0.0657 (15)	
C1	0.5169 (9)	-0.0033 (7)	0.8841 (3)	0.0531 (16)	
C2	0.3671 (9)	0.0921 (7)	0.9230 (3)	0.0557 (16)	
C3	0.2517 (9)	0.0427 (9)	0.9661 (4)	0.0670 (19)	
Н3	0.1510	0.1063	0.9917	0.080*	
C4	0.2912 (12)	-0.1027 (10)	0.9697 (4)	0.079 (2)	
H4	0.2162	-0.1396	0.9984	0.095*	
C5	0.4422 (12)	-0.1974 (9)	0.9311 (4)	0.077 (2)	
Н5	0.4652	-0.2963	0.9352	0.092*	
C6	0.5578 (10)	-0.1508 (7)	0.8874 (4)	0.0655 (19)	
H6	0.6579	-0.2149	0.8616	0.079*	
C7	0.5054 (10)	0.2196 (7)	0.8613 (4)	0.0616 (18)	
H7	0.5329	0.2980	0.8418	0.074*	
C8	0.7646 (12)	0.0302 (9)	0.7957 (4)	0.088 (3)	
H8A	0.7680	0.1084	0.7612	0.106*	
H8B	0.7669	-0.0485	0.7675	0.106*	
С9	0.9214 (12)	-0.0215 (11)	0.8349 (6)	0.117 (3)	
H9A	0.9124	0.0509	0.8682	0.175*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9B	1.0224	-0.0386	0.7996	0.175*	
H9C	0.9305	-0.1100	0.8622	0.175*	
C10	0.2278 (10)	0.3638 (8)	0.9367 (4)	0.077 (2)	
H10A	0.1171	0.3601	0.9309	0.093*	
H10B	0.2326	0.3672	0.9890	0.093*	
C11	0.2388 (12)	0.4979 (8)	0.8993 (5)	0.101 (3)	
H11A	0.3416	0.5084	0.9098	0.151*	
H11B	0.1389	0.5802	0.9168	0.151*	
H11C	0.2432	0.4920	0.8470	0.151*	
C12	0.3604 (10)	0.8877 (7)	0.5645 (4)	0.0619 (18)	
C13	0.4523 (9)	0.8350 (7)	0.4965 (4)	0.0545 (16)	
C14	0.3935 (11)	0.9000 (8)	0.4311 (4)	0.072 (2)	
H14	0.4537	0.8644	0.3858	0.086*	
C15	0.2428 (12)	1.0190 (10)	0.4362 (5)	0.087 (2)	
H15	0.1996	1.0669	0.3932	0.104*	
C16	0.1514 (11)	1.0707 (9)	0.5050 (6)	0.087 (3)	
H16	0.0478	1.1511	0.5063	0.104*	
C17	0.2093 (10)	1.0075 (8)	0.5694 (5)	0.077 (2)	
H17	0.1493	1.0436	0.6147	0.092*	
C18	0.4168 (17)	0.8111 (10)	0.6994 (4)	0.126 (4)	
H18A	0.5189	0.8092	0.7186	0.151*	
H18B	0.3254	0.9048	0.7102	0.151*	
C19	0.3668 (13)	0.7051 (11)	0.7371 (5)	0.116 (3)	
H19A	0.2707	0.7005	0.7165	0.174*	
H19B	0.3332	0.7282	0.7882	0.174*	
H19C	0.4619	0.6129	0.7327	0.174*	
C20	0.7368 (11)	0.6199 (9)	0.4597 (5)	0.094 (3)	
H20A	0.7525	0.6768	0.4156	0.113*	
H20B	0.8445	0.5822	0.4815	0.113*	
C21	0.6995 (15)	0.5009 (11)	0.4393 (6)	0.131 (4)	
H21A	0.6815	0.4452	0.4828	0.197*	
H21B	0.7950	0.4402	0.4066	0.197*	
H21C	0.5968	0.5374	0.4149	0.197*	
C28	0.5942 (12)	0.6992 (8)	0.5842 (4)	0.082 (2)	
H28	0.6782	0.6263	0.6084	0.099*	
Br1	0.7857 (14)	0.3331 (10)	0.6509 (7)	0.068 (2)	0.49 (6)
Br1'	0.745 (4)	0.3411 (16)	0.6681 (16)	0.096 (3)	0.51 (6)
Br2	1.23998 (10)	0.21193 (8)	0.74047 (4)	0.0769 (2)	
Br3	0.77611 (10)	0.41151 (9)	0.88750 (4)	0.0735 (2)	
Br4	0.92020 (11)	0.66240 (8)	0.71463 (5)	0.0789 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.06174 (18)	0.05316 (17)	0.06080 (17)	-0.01868 (13)	-0.01052 (12)	-0.00390 (12)
N1	0.075 (4)	0.053 (3)	0.053 (3)	-0.029 (3)	-0.006 (3)	-0.002 (3)
N2	0.064 (4)	0.053 (3)	0.052 (3)	-0.022 (3)	-0.017 (3)	0.000 (3)
N3	0.113 (5)	0.057 (4)	0.051 (3)	-0.021 (4)	-0.004 (4)	0.000 (3)

N4	0.076 (4)	0.054 (3)	0.059 (4)	-0.022 (3)	0.005 (3)	-0.003 (3)
C1	0.070 (5)	0.059 (4)	0.040 (3)	-0.034 (4)	-0.013 (3)	0.002 (3)
C2	0.065 (4)	0.059 (4)	0.050 (4)	-0.027 (4)	-0.022 (3)	0.001 (3)
C3	0.064 (5)	0.084 (5)	0.065 (4)	-0.043 (4)	-0.008 (4)	0.007 (4)
C4	0.098 (6)	0.098 (6)	0.069 (5)	-0.067 (6)	-0.020 (5)	0.016 (5)
C5	0.108 (7)	0.070 (5)	0.071 (5)	-0.052 (5)	-0.023 (5)	0.003 (4)
C6	0.094 (6)	0.055 (4)	0.054 (4)	-0.031 (4)	-0.019 (4)	-0.003 (3)
C7	0.081 (5)	0.058 (4)	0.055 (4)	-0.037 (4)	-0.011 (4)	0.002 (3)
C8	0.123 (8)	0.065 (5)	0.067 (5)	-0.039 (5)	0.033 (5)	-0.009 (4)
C9	0.072 (6)	0.111 (7)	0.147 (9)	-0.022 (6)	0.035 (6)	-0.037 (7)
C10	0.064 (5)	0.068 (5)	0.091 (5)	-0.012 (4)	-0.020 (4)	-0.002 (4)
C11	0.112 (7)	0.052 (5)	0.135 (8)	-0.027 (5)	-0.015 (6)	-0.004 (5)
C12	0.075 (5)	0.046 (4)	0.068 (5)	-0.028 (4)	-0.001 (4)	-0.007 (3)
C13	0.063 (4)	0.051 (4)	0.057 (4)	-0.032 (3)	-0.003 (3)	0.000 (3)
C14	0.094 (6)	0.074 (5)	0.060 (4)	-0.043 (5)	-0.021 (4)	0.002 (4)
C15	0.102 (7)	0.090 (6)	0.085 (6)	-0.047 (6)	-0.047 (5)	0.016 (5)
C16	0.066 (5)	0.069 (5)	0.128 (8)	-0.022 (4)	-0.023 (5)	-0.021 (5)
C17	0.074 (5)	0.071 (5)	0.081 (6)	-0.023 (4)	-0.002 (4)	-0.016 (4)
C18	0.211 (12)	0.091 (7)	0.059 (5)	-0.045 (8)	0.008 (6)	-0.011 (5)
C19	0.137 (9)	0.141 (9)	0.079 (6)	-0.075 (7)	0.040 (6)	-0.030 (6)
C20	0.093 (6)	0.092 (6)	0.085 (6)	-0.031 (5)	0.019 (5)	-0.013 (5)
C21	0.144 (10)	0.132 (9)	0.118 (8)	-0.063 (8)	0.055 (7)	-0.066 (7)
C28	0.118 (7)	0.054 (5)	0.059 (5)	-0.018 (5)	-0.004 (5)	0.002 (4)
Br1	0.083 (3)	0.054 (3)	0.073 (3)	-0.024 (3)	-0.031 (2)	-0.003 (2)
Br1'	0.135 (8)	0.088 (4)	0.097 (7)	-0.065 (4)	-0.065 (6)	0.026 (3)
Br2	0.0681 (5)	0.0800 (5)	0.0583 (4)	0.0027 (4)	-0.0134 (4)	-0.0127 (4)
Br3	0.0739 (5)	0.0840 (5)	0.0668 (4)	-0.0379 (4)	0.0083 (4)	-0.0146 (4)
Br4	0.0853 (6)	0.0524 (4)	0.0948 (6)	-0.0268 (4)	0.0065 (4)	-0.0060 (4)

Geometric parameters (Å, °)

Hg1—Br1' 2.594 (11) C9—H9C 0.96 Hg1—Br4 2.5904 (0) C10—C11 1.48	500 52 (10)
$H_{a1} = D_{a1} = 0.0000 + 0.0000 + 0.00000 + 0.00000 + 0.00000 + 0.000000 + 0.0000000 + 0.00000000$	(10)
$\frac{1.48}{1.48}$	
Hg1—Br3 2.6211 (8) C10—H10A 0.97	00
Hg1—Br1 2.623 (11) C10—H10B 0.97	00
N1—C7 1.325 (8) C11—H11A 0.96	00
N1—C1 1.389 (8) C11—H11B 0.96	00
N1—C8 1.482 (9) C11—H11C 0.96	600
N2—C7 1.301 (8) C12—C17 1.36	8 (10)
N2—C2 1.386 (8) C12—C13 1.39	6 (9)
N2—C10 1.485 (8) C13—C14 1.37	6 (9)
N3—C28 1.322 (9) C14—C15 1.36	62 (11)
N3—C12 1.385 (9) C14—H14 0.93	00
N3—C18 1.484 (10) C15—C16 1.40	6 (12)
N4—C28 1.306 (9) C15—H15 0.93	00
N4—C13 1.392 (8) C16—C17 1.35	3 (11)
N4—C20 1.478 (9) C16—H16 0.93	00
C1—C6 1.377 (9) C17—H17 0.93	00

C1—C2	1.393 (9)	C18—C19	1.384 (12)
C2—C3	1.377 (9)	C18—H18A	0.9700
C3—C4	1.358 (10)	C18—H18B	0.9700
С3—Н3	0.9300	С19—Н19А	0.9600
C4—C5	1.393 (11)	С19—Н19В	0.9600
C4—H4	0.9300	С19—Н19С	0.9600
C5—C6	1.367 (10)	C20—C21	1.434 (12)
С5—Н5	0.9300	C20—H20A	0.9700
С6—Н6	0.9300	С20—Н20В	0.9700
С7—Н7	0.9300	C21—H21A	0.9600
C8—C9	1.488 (12)	C21—H21B	0.9600
C8—H8A	0.9700	C21—H21C	0.9600
C8—H8B	0.9700	C28—H28	0.9300
С9—Н9А	0.9600		
Br2—Hg1—Br1'	110.3 (7)	N2-C10-H10A	109.0
Br2—Hg1—Br4	111.94 (3)	C11-C10-H10B	109.0
Br1'—Hg1—Br4	108.4 (3)	N2-C10-H10B	109.0
Br2—Hg1—Br3	111.20 (3)	H10A—C10—H10B	107.8
Br1'—Hg1—Br3	107.5 (8)	C10-C11-H11A	109.5
Br4—Hg1—Br3	107.32 (3)	C10-C11-H11B	109.5
Br2—Hg1—Br1	103.78 (19)	H11A—C11—H11B	109.5
Br4—Hg1—Br1	106.1 (3)	C10-C11-H11C	109.5
Br3—Hg1—Br1	116.4 (3)	H11A—C11—H11C	109.5
C7—N1—C1	108.2 (6)	H11B—C11—H11C	109.5
C7—N1—C8	125.5 (6)	C17—C12—N3	131.7 (7)
C1—N1—C8	126.3 (6)	C17—C12—C13	121.8 (7)
C7—N2—C2	108.9 (6)	N3—C12—C13	106.4 (6)
C7—N2—C10	127.7 (6)	C14—C13—N4	132.6 (7)
C2—N2—C10	123.3 (6)	C14—C13—C12	121.4 (7)
C28—N3—C12	107.9 (6)	N4—C13—C12	106.0 (6)
C28—N3—C18	124.0 (7)	C15—C14—C13	116.7 (7)
C12—N3—C18	128.1 (7)	C15-C14-H14	121.7
C28—N4—C13	108.2 (6)	C13—C14—H14	121.7
C28—N4—C20	124.3 (7)	C14—C15—C16	121.2 (7)
C13—N4—C20	127.5 (6)	C14—C15—H15	119.4
C6—C1—N1	132.2 (7)	C16—C15—H15	119.4
C6—C1—C2	121.9 (6)	C17—C16—C15	122.2 (8)
N1—C1—C2	105.9 (6)	C17—C16—H16	118.9
C3—C2—N2	132.6 (7)	C15—C16—H16	118.9
C3—C2—C1	121.2 (6)	C16—C17—C12	116.6 (7)
N2—C2—C1	106.2 (6)	C16—C17—H17	121.7
C4—C3—C2	117.3 (7)	С12—С17—Н17	121.7
С4—С3—Н3	121.4	C19—C18—N3	116.4 (8)
С2—С3—Н3	121.4	C19—C18—H18A	108.2
C3—C4—C5	121.1 (7)	N3—C18—H18A	108.2
С3—С4—Н4	119.4	C19—C18—H18B	108.2
С5—С4—Н4	119.4	N3—C18—H18B	108.2
C6—C5—C4	122.7 (7)	H18A—C18—H18B	107.3
С6—С5—Н5	118.7	C18—C19—H19A	109.5

С4—С5—Н5	118.7	C18—C19—H19B	109.5
C5—C6—C1	115.9 (7)	H19A—C19—H19B	109.5
С5—С6—Н6	122.1	С18—С19—Н19С	109.5
C1—C6—H6	122.1	H19A—C19—H19C	109.5
N2—C7—N1	110.7 (6)	H19B—C19—H19C	109.5
N2—C7—H7	124.6	C21—C20—N4	112.5 (7)
N1—C7—H7	124.6	C21—C20—H20A	109.1
N1—C8—C9	113.4 (7)	N4—C20—H20A	109.1
N1—C8—H8A	108.9	C21—C20—H20B	109.1
С9—С8—Н8А	108.9	N4—C20—H20B	109.1
N1—C8—H8B	108.9	H20A—C20—H20B	107.8
С9—С8—Н8В	108.9	C20—C21—H21A	109.5
H8A—C8—H8B	107.7	C20—C21—H21B	109.5
С8—С9—Н9А	109.5	H21A—C21—H21B	109.5
С8—С9—Н9В	109.5	C20—C21—H21C	109.5
Н9А—С9—Н9В	109.5	H21A—C21—H21C	109.5
С8—С9—Н9С	109.5	$H_{21B} - C_{21} - H_{21C}$	109.5
H9A_C9_H9C	109.5	N4-C28-N3	111 4 (7)
H9B-C9-H9C	109.5	N4-C28-H28	124.3
C_{11} C_{10} N_{2}	113.0 (6)	N3-C28-H28	124.3
C11—C10—H10A	109.0		121.5
C7—N1—C1—C6	179.5 (7)	C28—N3—C12—C17	-179.0 (8)
C8-N1-C1-C6	0.5 (11)	C18 - N3 - C12 - C17	1.1 (14)
C7-N1-C1-C2	0.0 (7)	$C_{28} - N_{3} - C_{12} - C_{13}$	-1.2(8)
C8 - N1 - C1 - C2	-1791(7)	C18 - N3 - C12 - C13	178 8 (8)
C7 - N2 - C2 - C3	-1782(7)	$C_{28} - N_{4} - C_{13} - C_{14}$	1794(8)
$C_{10} = N_{2} = C_{2} = C_{3}$	-1.6(10)	$C_{20} = N_{4} = C_{13} = C_{14}$	0.0(12)
C7 - N2 - C2 - C1	16(7)	$C_{28} = N_{4} = C_{13} = C_{12}$	-0.9(8)
$C_{10} = N_{2} = C_{2} = C_{1}$	178 2 (6)	$C_{20} = N_{4} = C_{13} = C_{12}$	179 7 (7)
$C_{-}C_{1}$	-0.7(9)	C_{17} C_{12} C_{13} C_{14}	-1.0(10)
N1 - C1 - C2 - C3	178 9 (6)	$N_3 - C_{12} - C_{13} - C_{14}$	-1790(6)
$C_{6} = C_{1} = C_{2} = N_{2}^{2}$	179.4 (5)	C17 - C12 - C13 - N4	1793(6)
N1 - C1 - C2 - N2	-10(6)	N_{3} C12 C13 N4	1,7,5 (0) 1,3 (7)
$N_{2} - C_{2} - C_{3} - C_{4}$	-1795(6)	N4-C13-C14-C15	-1796(7)
C1 - C2 - C3 - C4	0.7(10)	C_{12} C_{13} C_{14} C_{15}	0.8(10)
$C_2 = C_3 = C_4 = C_5$	-0.2(11)	$C_{12} = C_{13} = C_{14} = C_{15} = C_{16}$	-0.9(11)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	-0.4(12)	C_{14} C_{15} C_{16} C_{17}	13(13)
C4-C5-C6-C1	0.1(12) 0.4(11)	C_{15} C_{16} C_{17} C_{12} C	-14(12)
N1 - C1 - C6 - C5	-1793(6)	N_{3} C_{12} C_{17} C_{16}	178 7 (8)
$C_{2}^{2} - C_{1}^{1} - C_{6}^{2} - C_{5}^{5}$	0.2(9)	C_{13} C_{12} C_{17} C_{16}	170.7(0)
$C_2 = N_2 = C_7 = N_1$	-17(7)	$C_{13}^{28} = C_{12}^{18} = C_{13}^{19}$	-71.1(14)
$C_{10} = N_{2} = C_{10} = N_{10}$	-1781(6)	$C_{20} = N_3 - C_{10} = C_{10}$	108.8(11)
C1 - N1 - C7 - N2	11(7)	$C_{12} = N_{10} = C_{10} = C_{11}$	916(11)
$C_{8} = N_{1} = C_{7} = N_{2}$	-179.8 (7)	C_{13} N/ C_{20} C_{21}	-800(11)
$C_{0} = 101 - C_{1} - 102$	07.0 (0)	C_{13} N_{14} C_{20} C_{21} C_{13} N_{14} C_{28} N_{2}	0.2(0)
$C_1 = N_1 = C_0 = C_2$	-83.2(9)	$C_{13} = 104 = 0.20 = 103$	170.6(7)
$C_1 - N_1 - C_0 - C_7$	9.2(9)	$C_{20} = 104 = C_{20} = 103$	1/3.0(7)
$C_1 - N_2 - C_{10} - C_{11}$	7.0 (10) 166 8 (6)	$C_{12} = 1N_{3} = C_{20} = 1N_{4}$	170.4(9)
C2-N2-C10-C11	-100.8 (0)	U10-N3-U28-N4	-1/9.4 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8—H8A…Br1'	0.97	2.73	3.69 (2)	175
C8—H8B···Br4 ⁱ	0.97	2.86	3.755 (8)	153
C28—H28…Br1'	0.93	2.84	3.59 (2)	139
Symmetry codes: (i) $x, y-1, z$.				

Fig. 1

Fig. 2

Fig. 3

Scheme 1